
MATH2118 Lecture Notes

Further Engineering Mathematics C

Matrices

Dr Eddie Ly

School of Mathematical & Geospatial Sciences (SMGS)

College of Sciences, Engineering & Health (SEH)

RMIT University, Melbourne, Australia

Summer Course 2015

1



2 Matrices

Contents

1 Introduction 3

1.1 Equality of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Addition of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Tranpose of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Some Special Matrices 8

2.1 Zero Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Unit (Identity) Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Symmetric and Antisymmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Diagonalisation of Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Gaussian Elimination 12

4 Inverse of a Matrix 14

5 Determinant of a Matrix 16

5.1 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Eigenvalues and Eigenvectors 18

7 Review Questions 24

8 Answers to Review Questions 26



Lecture Notes – MATH2118 Further Engineering Mathematics C 3

1 Introduction

We define any rectangular arrangement of elements to be a matrix. Generally, square

brackets [ ] are used to denote a matrix. For example,

[
x y z

]
is a row matrix or row vector,

x

y

z

 is a column matrix or column vector, and


a11 a12 a13

a21 a22 a23

a31 a32 a33

 is a 3× 3 matrix (3 rows and 3 columns).

A square matrix has an equal number of rows and columns. The general m× n matrix is

A =
[
aij

]
mn

=



a11 a12 a13 · · · · · · a1n

a21 a22
(
a23

)
· · · · · · a2n

a31 a32 a33 · · · · · · a3n
...

...
...

...
...

...

am1 am2 am3 · · · · · · amn


.

The element a23 is the element in second row and third column of matrix A. The

dimension (or order) of a matrix is the number of rows by the number of columns.

1.1 Equality of Matrices

Two matrices are said to be equal if they have the same order and all corresponding

elements are equal. For example,

A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]

both have the same order (i.e. 2×2 matrix) and are equal if a11 = b11, a12 = b12, a21 = b21

and a22 = b22, or aij = bij for i, j = 1, 2.
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1.2 Addition of Matrices

If A = [aij]mn and B = [bij]mn (both matrices must have the same order) then

A+B =
[
aij + bij

]
mn

=
[
bij + aij

]
mn

= B +A.

That is, matrices commute under addition,

A+B = B +A and A+ (B +C) = (A+B) +C.

For example, if A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
, then

A+B =

[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
=

[
b11 + a11 b12 + a12

b21 + a21 b22 + a22

]
= B +A.

1.3 Scalar Multiplication

If A is a matrix and k is a scalar (real or complex number) then

kA = k
[
aij

]
mn

=
[
kaij

]
mn

.

Thus, A−B = A+ (−1)B. For example, if A =

[
a11 a12

a21 a22

]
, then

kA =

[
ka11 ka12

ka21 ka22

]
.

1.4 Matrix Multiplication

If A =
[
aij

]
mn

and B =
[
bjk

]
rs
, then the product C = AB is defined only if n = r. That

is, the number of columns in A equals the number of rows in B. The order of matrix C

is m× s, i.e.
[
aij

]
mn

[
bjk

]
rs
=

[
cik

]
ms
, where

cik =
n∑

j=1

aijbjk

= ai1b1k + ai2b2k + ai3b3k + · · ·+ ainbnk

= dot product of the ith row of A with the kth column of B.
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In general, matrices are non-commutative under multiplication,

AB ̸= BA.

If two matrices are not conformable (not able to be multiplied), then their product is

undefined.

EXAMPLE

If A =


1 2 0

2 −1 2

0 2 1

, find all solutions x =


a

b

c

 of Ax = −3x.

solution

Ax = −3x ⇒


1 2 0

2 −1 2

0 2 1



a

b

c

 = −3


a

b

c

.
Expanding this system of equations gives

a+ 2b = −3a ⇒ 2a+ b = 0

2a− b+ 2c = −3b ⇒ a+ b+ c = 0

2b+ c = −3c ⇒ b+ 2c = 0

The first and third equations give a = c = −1
2
b, and inserting into the second

equation gives −1
2
b+ b− 1

2
b = 0, which is true for all real values of b. Hence,

x = b


−1

2

1

−1
2

 = − b

2


1

−2

1

.

note:

If all operations are defined, then

A(B +C) = AB +AC,

(B +C)A = BA+CA,

A(BC) = (AB)C.
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Since AB ̸= BA, in general, we have

(A−B)(A+B) = A2 +AB −BA−B2

̸= A2 −B2,

(A+B)2 = (A+B)(A+B)

= A2 +AB +BA+B2

̸= A2 + 2AB +B2,

(AB)2 = ABAB

̸= A2B2.

1.5 Tranpose of a Matrix

If A is an m × n matrix
[
aij

]
mn

, then the transpose of A, denoted by AT , is the n ×m

matrix
[
aji

]
nm

obtained by interchanging the rows and columns of A.

For example, if A =

[
1 2 3

4 5 6

]
, then

AT =


1 4

2 5

3 6

.
The ith row of AT is the ith column of A, and the jth column of AT is the jth row of

A.

note:

(A+B)T = AT +BT if A and B have the same order,(
AT

)T
= A,

(AB)T = BTAT provided AB is defined (A and B are conformable).
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EXAMPLE

Given A =

[
1 2

3 4

]
, B =

[
0 −1

2 1

]
and C =

[
5 1

1 3

]
, show that

(a) (A+B)C = AC +BC,

(b) (AB)C = A(BC),

(c) (AB)T = BTAT .

solution

A+B =

[
1 2

3 4

]
+

[
0 −1

2 1

]
=

[
1 1

5 5

]
,

(A+B)C =

[
1 1

5 5

][
5 1

1 3

]
=

[
6 4

30 20

]
,

AC =

[
1 2

3 4

][
5 1

1 3

]
=

[
7 7

19 15

]
,

BC =

[
0 −1

2 1

][
5 1

1 3

]
=

[
−1 −3

11 5

]
,

⇒ AC +BC =

[
7 7

19 15

]
+

[
−1 −3

11 5

]
=

[
6 4

30 20

]
= (A+B)C.

AB =

[
1 2

3 4

][
0 −1

2 1

]
=

[
4 1

8 1

]
,

(AB)C =

[
4 1

8 1

][
5 1

1 3

]
=

[
21 7

41 11

]
,

⇒ A(BC) =

[
1 2

3 4

][
−1 −3

11 5

]
=

[
21 7

41 11

]
= (AB)C.

(AB)T =

[
4 1

8 1

]T

=

[
4 8

1 1

]
,

⇒ BTAT =

[
0 −1

2 1

]T[
1 2

3 4

]T

=

[
0 2

−1 1

][
1 3

2 4

]
=

[
4 8

1 1

]
= (AB)T .
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2 Some Special Matrices

2.1 Zero Matrix

A matrix of any order contains only zero elements. For example,

0 =



0 0 · · · · · · · · · 0

0 0 · · · · · · · · · 0
... · · · . . . · · · · · · ...
... · · · · · · . . . · · · ...
... · · · · · · · · · . . .

...

0 0 · · · · · · · · · 0


.

Note that

A+ 0 = 0+A = A (identity under matrix addition)

and

A0 = 0A = 0.

Unlike ordinary algebra, AB = 0 does not imply that A = 0 or B = 0.

EXAMPLE

Given A =


2 −3 −5

−1 4 5

1 −3 −4

 and B =


−1 3 5

1 −3 −5

−1 3 5

, we have

AB =


2 −3 −5

−1 4 5

1 −3 −4



−1 3 5

1 −3 −5

−1 3 5



=


0 0 0

0 0 0

0 0 0


= 0.

Even though A ̸= 0 and B ̸= 0, we obtain AB = 0.
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2.2 Unit (Identity) Matrix

The unit matrix In (or I when the order is known) is a square matrix of order n×n with

entries of 1’s down the main diagonal and 0’s everywhere else. For example,

In =



1 0 0 0 0 0

0 1 0 · · · · · · 0

0 0 1 · · · · · · 0

0 0 · · · . . . · · · 0

0 0 · · · · · · . . . 0

0 0 0 0 0 1


.

For any square matrix A,

AI = IA = A.

2.3 Diagonal Matrices

A square matrix in which all off-diagonal elements are zero. If both A and B are diagonal

matrices of the same order, then A+B and AB are also diagonal, and AB = BA.

For example,

A =


a11 0 0

0 a22 0

0 0 a33

 where a11, a22, a33 ̸= 0.

2.4 Triangular Matrices

A lower triangular matrix is a square matrix where all elements above the main diagonal

are zero, such as

L =


ℓ11 0 0

ℓ21 ℓ22 0

ℓ31 ℓ32 ℓ33

.
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An upper triangular matrix is a square matrix where all elements below the main diagonal

are zero. For example,

U =


u11 u12 u13

0 u22 u23

0 0 u33

.

2.5 Symmetric and Antisymmetric Matrices

A square matrix A is symmetric if AT = A, i.e. aij = aji, displaying symmetry about

the main diagonal. Matrix A is anti-symmetric (or skew-symmetric) if AT = −A, i.e.

aij = −aji, displaying anti-symmetry about the main diagonal (the diagonal will consist

solely of zero elements).

EXAMPLE

Matrix A is anti-symmetric, since

A =


0 1 2

−1 0 3

−2 −3 0

 and AT =


0 −1 −2

1 0 −3

2 3 0

 = −A.

2.6 Orthogonal Matrices

A square matrix P is said to be orthogonal if

PP T = P TP = I.

The columns (rows) of an orthogonal matrix are mutually orthogonal unit vectors. For

example,

P =
1

3


1 −2 −2

2 2 −1

2 −1 2

.

2.7 Invertible Matrices

A square matrix A is said to be invertible (or non-singular) if there exists a square matrix

B such that

AB = BA = I.

The matrix B is then called the inverse of A, denoted by A−1, and its inverse is unique.
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EXAMPLE

Consider matrix A =

[
2 −5

−1 −3

]
. The inverse of A is

A−1 =

[
3/11 −5/11

−1/11 −2/11

]
,

since

AA−1 =

[
2 −5

−1 −3

][
3/11 −5/11

−1/11 −2/11

]

=

[
1 0

0 1

]
= I.

remarks:

Note that not every square matrix has an inverse. If |A| = 0 then A−1 cannot exist, since

|AB| = |A| × |B|,

and if |A| = 0, then |AB| = 0, while |I| = 1. Hence, it is impossible for AB = I,

because |AB| ̸= |I|. If both A and B are non-singular matrices of the same order, then(
A−1

)−1
= A,(

AT
)−1

=
(
A−1

)T
,

(AB)−1 = B−1A−1.

2.8 Diagonalisation of Matrix

Square matrix P diagonalises matrix A if

P−1AP = I.
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3 Gaussian Elimination

Consider the following system of equations:

x1 + 2x2 + x3 = 0,

2x1 + 2x2 + 3x3 = 3,

−x1 − 3x2 = 2.

The coefficients of the unknowns (the symbols used for the unknowns are not important)

together with the right-hand-side constants are all that is needed when determining the

solution. Rewrite the system of equations in an augmented matrix form shown below,
1 2 1 0

2 2 3 3

−1 −3 0 2


R1

R2

R3

step 1:

Eliminate x1 from R2 and R3. We define multipliers,

m21 =
a21
a11

=
2

1
= 2 and m31 =

a31
a11

=
−1

1
= −1,

and substract m21R1 from R2, and substract m31R1 from R3:
1 2 1 0

0 −2 1 3

0 −1 1 2

R2 − 2R1

R3 +R1

step 2:

Eliminate x2 from R3 by substracting 1
2
R2 from R3:

1 2 1 0

0 −2 1 3

0 0 1
2

1
2


R3 − 1

2
R2

All elements below the main diagonal are zero, this matrix is said to be in row-echelon

form.

step 3:

Work backwards from the last to first equation:

1
2
x3 =

1
2

⇒ x3 = 1

−2x2 + x3 = 3 ⇒ x2 = −1

x1 + 2x2 + x3 = 0 ⇒ x1 = 1

Gaussian elimination is the most efficient means of solving a system of linear equations.
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EXAMPLE

Determine the solutions (if they exist) of the following system of equations,

x1 + 2x2 + 3x3 = 2,

4x1 + 5x2 + 6x3 = 8,

7x1 + 8x2 + 9x3 = 13.

solution

Write this system of equations in an augmented matrix form,
1 2 3 2

4 5 6 8

7 8 9 13

 ∼


1 2 3 2

0 −3 −6 0

0 −6 −12 −1

R2 − 4R1

R3 − 7R1

∼


1 2 3 2

0 1 2 0

0 0 0 −1

−1
3
R2

R3 − 2R2

The last row of this matrix implies 0x1 + 0x2 + 0x3 = −1, which is clearly impos-

sible. Hence, this system has no solution; such systems of equations are said to be

inconsistent.

EXAMPLE

Determine the solutions (if they exist) of the following system of equations,

x1 + 2x2 + 3x3 = 2,

4x1 + 5x2 + 6x3 = 8,

7x1 + 8x2 + 9x3 = 14.

solution


1 2 3 2

4 5 6 8

7 8 9 14

 ∼


1 2 3 2

0 −3 −6 0

0 −6 −12 0

R2 − 4R1

R3 − 7R1

∼


1 2 3 2

0 1 2 0

0 0 0 0

−1
3
R2

R3 − 2R2
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The last row of zeros indicates that the last equation in the system is redundant.

Working backward from R2 to R1, where x3 can take any value, we have

x2 + 2x3 = 0 ⇒ x2 = −2x3

x1 + 2x2 + 3x3 = 2 ⇒ x1 = 2− 2x2 − 3x3 = 2 + x3

For instance, if x3 = α (any real value), the general solution is

x1 = 2 + α

x2 = −2α

x3 = α

⇒


x1

x2

x3

 =


2

0

0

+ α


1

−2

1

,
or

(x1, x2, x3) = (2, 0, 0) + α(1,−2, 1); α ∈ R.

4 Inverse of a Matrix

If the matrix A is non-singular, i.e. |A| ̸= 0, then its inverse A−1 may be found in the

following way:

(1) Write down A with the unit matrix I in an augmented matrix form, i.e.
[
A| I

]
.

(2) Perform a sequence of elementary row operations on
[
A | I

]
until A becomes I.

(3) By then matrix I will have been converted into the inverse matrixA−1, i.e.
[
I |A−1

]
.

note:

For a 2 × 2 matrix, A =

[
a b

c d

]
, its matrix inverse can be found using the following

formula

A−1 =
1

|A|

[
d −b

−c a

]
where |A| = ad− bc.

This is only for a 2× 2 matrix.
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EXAMPLE

If A =


1 1 0

1 0 1

0 1 1

, find A−1 using elementary row operations.

solution 
1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1



∼


1 1 0 1 0 0

0 −1 1 −1 1 0

0 1 1 0 0 1

R2 − R1

∼


1 0 1 0 1 0

0 −1 1 −1 1 0

0 0 2 −1 1 1


R1 +R2

R3 +R2

∼


2 0 0 1 1 −1

0 −2 0 −1 1 −1

0 0 2 −1 1 1


2R1 − R3

2R2 − R3

∼


1 0 0 1

2
1
2

−1
2

0 1 0 1
2

−1
2

1
2

0 0 1 −1
2

1
2

1
2


1
2
R1

−1
2
R2

1
2
R3

Inverse of A:

A−1 =
1

2


1 1 −1

1 −1 1

−1 1 1

.
Check: Show AA−1 = I holds for A:

AA−1 =
1

2


1 1 0

1 0 1

0 1 1




1 1 −1

1 −1 1

−1 1 1



=
1

2


2 0 0

0 2 0

0 0 2


= I.
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5 Determinant of a Matrix

To each square matrix there is associated a number called the determinant of a matrix.

For example, for n× n matrix A,

detA =
∣∣A∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · · · · a1n

a21 a22 · · · · · · a2n
...

...
. . . · · · ...

...
... · · · . . .

...

an1 an2 · · · · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For a 2× 2 matrix, A =

[
a11 a12

a21 a22

]
, the 2× 2 determinant is

detA =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a21a12 .

A 3× 3 determinant is defined in terms of 2× 2 determinants,∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣︸ ︷︷ ︸
minor of a11

−a12

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣︸ ︷︷ ︸
minor of a12

+a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣︸ ︷︷ ︸
minor of a13

.

The minor of a11 is obtained from the original determinant by deleting the row and column

which contains a1, etc. Note the sequence of signs + − + associated with the coefficients

a11, a12 and a13, respectively. Alternatively, we can expand the determinant across the

second or third rows, or even down any of the columns.

For example, expanding down the first column gives∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣︸ ︷︷ ︸
minor of a11

−a21

∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣︸ ︷︷ ︸
minor of a21

+a31

∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣︸ ︷︷ ︸
minor of a31

.

Note the following pattern of signs when expanding a 3× 3 determinant,

+ − +

− + −
+ − +
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High-order determinants can be expanded in terms of lower-order determinants in a similar

manner to 3× 3 determinants where the pattern of signs extends naturally as follows,

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

5.1 Properties of Determinants

For square matrices A, B, C and a scalar k:

(1) If A = BC then |A| = |B||C|.

However, if A = B +C, then |A| ̸= |B|+ |C|.

(2) If two columns (rows) of A are identical then |A| = 0.

(3) If one column (row) of A is the zero vector, then |A| = 0.

For example,∣∣∣∣∣∣∣∣
0 0 0

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣− 0

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣+ 0

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣ = 0.

(4) Interchanging two columns (rows) of a determinant changes the sign of the deter-

minant.

(5) The determinant is unaltered if a scalar multiple of one row (column) is added to

another row (column).

(6) Interchanging the rows and columns of a determinant does not alter its value,∣∣AT
∣∣ = |A|.

(7) IfA is the matrix obtained from matrixA by replacing the jth column (row), vector

Aj, by kAj, then |Ā| = k |A|. For example,∣∣∣∣∣ ka11 ka12

a21 a22

∣∣∣∣∣ = ka11a22 − ka12a21

= k(a11a22 − a12a21)

= k

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣.
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EXAMPLE ∣∣∣∣∣ 2 −3

−4 3

∣∣∣∣∣ = (2× 3)− (−4×−3)

= 6− 12

= −6.

EXAMPLE

Expanding along the last column gives∣∣∣∣∣∣∣∣
−1 3 1

2 5 0

3 2 −1

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣ 2 5

3 2

∣∣∣∣∣+ 0

∣∣∣∣∣ −1 3

3 2

∣∣∣∣∣− 1

∣∣∣∣∣ −1 3

2 5

∣∣∣∣∣
= (4− 15) + 0− (−5− 6)

= 0.

6 Eigenvalues and Eigenvectors

Consider any linear transformation A, which operates on the column vector v. If the

condition

Av = λv

is satisfied for λ (a scalar), then we have a situation where the transformationA does not change

the direction of v. The vector V is called an eigenvector of A, and the scalar λ is called

an eigenvalue of A; λ may be zero, real or complex value.

Note that if v is an eigenvector, then so is kv for some constant k. Thus, an eigenvector is

simply a vector which maps on a scalar multiple of itself, while eigenvalue gives a measure

of how the eigenvector is “stretched”. Note that

Av = λv = λIv,

where I is the identity matrix (same dimension as A), then(
A− λI

)
v = 0 and |A− λI||v| = 0.

Since v ̸= 0, so |v| ̸= 0, it follows that

det
(
A− λI

)
= |A− λI| = 0,

which is the characteristic equation of the matrix A (nth degree polynomial for n × n

matrix A). Hence, there are n real or complex eigenvalues (roots of its characteristic

equation) for an n× n matrix including repeated roots.
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EXAMPLE

Determine the eigenvalues and eigenvectors of A =


1 −2 7

0 −1 3

0 0 2

.
solution

Computing A− λI:

A− λI =


1 −2 7

0 −1 3

0 0 2

− λ


1 0 0

0 1 0

0 0 1



=


1− λ −2 7

0 −1− λ 3

0 0 2− λ

.
Characteristic equation:

∣∣A− λI
∣∣ =

∣∣∣∣∣∣∣∣
1− λ −2 7

0 −1− λ 3

0 0 2− λ

∣∣∣∣∣∣∣∣
= 0− 0 + (2− λ)

∣∣∣∣∣ 1− λ −2

0 −1− λ

∣∣∣∣∣
= (2− λ)

[
(1− λ)(−1− λ)− 0

]
= −(2− λ)(1− λ)(1 + λ).

Setting |A− λI| = 0 gives the eigenvalues λ = 2, 1, −1.

Eigenvector for λ = −1:

Find all non-zero vectors, v = [a b c]T , which satisfy

Av = λv or
(
A− λI

)
v = 0.

For λ = −1,
1− λ −2 7

0 −1− λ 3

0 0 2− λ



a

b

c

 =


2 −2 7

0 0 3

0 0 3



a

b

c

 =


0

0

0

.
Expanding this matrix equation gives

2a− 2b+ 7c = 0,

3c = 0,

3c = 0.
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Thus, c = 0 and a = b,

v = a


1

1

0

.
A possible eigenvector is (1, 1, 0).

Eigenvector for λ = 1:
1− λ −2 7

0 −1− λ 3

0 0 2− λ



a

b

c

 =


0 −2 7

0 −2 3

0 0 1



a

b

c

 =


0

0

0


Expanding this matrix equation gives

−2b+ 7c = 0,

−2b+ 3c = 0,

c = 0.

Thus, for b = c = 0, we have

v = a


1

0

0

,
and a possible eigenvector is (1, 0, 0).

Eigenvector for λ = 2:
1− λ −2 7

0 −1− λ 3

0 0 2− λ



a

b

c

 =


−1 −2 7

0 −3 3

0 0 0



a

b

c

 =


0

0

0

.
This gives

−a− 2b+ 7c = 0,

−3b+ 3c = 0,

0 = 0.

Thus, for b = c and a = −2b+ 7c = 5c,

v = c


5

1

1

,
and a possible eigenvector is (5, 1, 1).
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note:

If we construct a non-singular matrix, P , whose columns are eigenvectors (xi), corre-

sponding to the distinct eigenvalues, λi, of matrix A, respectively,

P =
[
x1, x2, . . . , xn

]
,

then P−1AP is a diagonal matrix, D, consists of λi values only,

P−1AP = D =



λ1 0 0 0 0

0 λ2 . . . . . . . . .

. . . . . . λi . . . . . .

. . . . . . . . .
. . . . . .

0 0 0 0 λn


.

The λi appear in the same order along the diagonal as the order of the eigenvector xi in

the column of P . Note that P is singular if A does not have distinct eigenvalues.

EXAMPLE

The eigenvectors of the last example are

x1 =


1

1

0

, x2 =


1

0

0

 and x3 =


5

1

1


correspond to λ1 = −1, λ2 = 1 and λ3 = 2, respectively. Show that P−1AP = D

is valid for the matrix P given below,

P =


1 1 5

1 0 1

0 0 1

 =
[
x1, x2, x3

]
.

solution

Recalling that A =


1 −2 7

0 −1 3

0 0 2

. Computing inverse of P as follows,


1 1 5 1 0 0

1 0 1 0 1 0

0 0 1 0 0 1

 ∼


1 0 1 0 1 0

1 1 5 1 0 0

0 0 1 0 0 1


R2 → R1

R1 → R2
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∼


1 0 1 0 1 0

0 1 4 1 −1 0

0 0 1 0 0 1

R2 − R1

∼


1 0 0 0 1 −1

0 1 0 1 −1 −4

0 0 1 0 0 1


R1 − R3

R2 − 4R3

Thus, the inverse is P−1 =


0 1 −1

1 −1 −4

0 0 1

.
Check: Verifying PP−1 = I,

PP−1 =


1 1 5

1 0 1

0 0 1



0 1 −1

1 −1 −4

0 0 1

 =


1 0 0

0 1 0

0 0 1

 = I.

Hence,

P−1AP =


0 1 −1

1 −1 −4

0 0 1




1 −2 7

0 −1 3

0 0 2



1 1 5

1 0 1

0 0 1



=


0 −1 1

1 −1 −4

0 0 2




1 1 5

1 0 1

0 0 1



=


−1 0 0

0 1 0

0 0 2



=


λ1 0 0

0 λ2 0

0 0 λ3


= D.
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EXAMPLE

Find the eigenvalues of A =

[
1 2

2 −2

]
.

solution

Evaluating
∣∣A− λI

∣∣ first,
∣∣A− λI

∣∣ = ∣∣∣∣∣ 1− λ 2

2 −2− λ

∣∣∣∣∣
= (1− λ)(−2− λ)− 4

= −2− λ+ 2λ+ λ2 − 4

= λ2 + λ− 6

= (λ+ 3)(λ− 2).

Setting
∣∣A− λI

∣∣ = 0 gives the eigenvalues of A,

λ1 = −3 and λ2 = 2.
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7 Review Questions

[1] Determine the solutions of the systems of equations:

(a)

x1 − 2x2 + 3x3 = 5,

2x1 + x2 − 5x3 = −7,

4x1 − 3x2 + 2x3 = 5.

(b)

2x1 − x2 + 7x3 = 18,

x1 + x2 + x3 = 3,

5x1 + 2x2 + 3x3 = 6.

[2] Find the general solution of the system of equations:

(a)

x1 + x2 + x3 + 2x4 − x5 = 0,

2x1 − x2 − x3 + x4 + 2x5 = 0,

x1 + 3x2 − 2x3 + x4 + x5 = 0.

(b)

x1 − 2x2 + x3 − x4 = 0,

2x1 + 4x2 − 3x3 = 0,

3x1 + 2x2 + 2x3 − x4 = 0.

[3] If A =


3 2 −2

−1 −4 1

2 −4 −1

, show that A3 + 2A2 −A− 2I = 0.

[4] Determine the inverse (if it exists) of each of the following matrices:

(a)


0 1 1

1 0 1

1 1 0

;

(b)


1 2 3

4 5 6

7 8 9

;
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(c)


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

.
[5] By solving [

a b

c d

][
x y

z w

]
=

[
1 0

0 1

]
(where ad− bc ̸= 0) for x, y, z and w, show that[

a b

c d

]−1

=
1

ad− bc

[
d −b

−c a

]
.

Hence, write down the inverse of A =

[
−3 −7

2 8

]
.

[6] Determine the eigenvalues and a set of three linearly independent eigenvectors for

each of the following matrices A:

(a)


1 −2 7

0 −1 3

0 0 2

;

(b)


3 2 4

2 0 2

4 2 3

.
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8 Answers to Review Questions

[1] (a)


x1

x2

x3

 =


1

1

2



(b)


x1

x2

x3

 =


−1

1

3



[2] (a)



x1

x2

x3

x4

x5


= α



−5

−2

−3

5

0


+ β



−5

6

14

0

15



(b)


x1

x2

x3

x4

 = α


−2

1

0

−4


[3] Not available.

[4] (a)
1

2


−1 1 1

1 −1 1

1 1 −1


(b) No inverse exists.

(c)
1

4


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1



[5]

[
−4/5 −7/10

1/5 3/10

]

[6] (a) Eigenvalues 1, −1 and 2 with the corresponding eigenvectors,
1

0

0

,

1

1

0

 and


5

1

1

, respectively.
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(b) Eigenvalues −1, −1 and 8 with the corresponding eigenvectors,
1

0

−1

,


1

−2

0

 and


2

1

2

, respectively.


